- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0001000005000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Tkocz, T. (5)
-
Pegden, W. (2)
-
Chasapis, G. (1)
-
Frieze, A (1)
-
Frieze, A. (1)
-
Frieze, Alan (1)
-
Jenkins, J. (1)
-
Li, J. (1)
-
Singh, S. (1)
-
Tkocz, T (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jenkins, J.; Tkocz, T. (, Israel journal of mathematics)
-
Chasapis, G.; Singh, S.; Tkocz, T. (, Analysis PDE)
-
Frieze, A.; Pegden, W.; Tkocz, T. (, Discrete analysis)null (Ed.)
-
Frieze, A; Tkocz, T (, The electronic journal of combinatorics)We establish sharp threshold for the connectivity of certain random graphs whose (dependent) edges are determined by uniform distributions on generalized Orlicz balls, crucially using their negative correlation properties. We also show existence of a unique giant component for such random graphs.more » « less
-
Frieze, Alan; Pegden, W.; Tkocz, T. (, SIAM journal on discrete mathematics)We consider arbitrary graphs $$G$$ with $$n$$ vertices and minimum degree at least $$\delta n$$ where $$\delta>0$$ is constant.\\ (a) If the conductance of $$G$$ is sufficiently large then we obtain an asymptotic expression for the cover time $$C_G$$ of $$G$$ as the solution to an explicit transcendental equation.\\ (b) If the conductance is not large enough to apply (a), but the mixing time of a random walk on $$G$$ is of a lesser magnitude than the cover time, then we can obtain an asymptotic deterministic estimate via a decomposition into a bounded number of dense subgraphs with high conductance. \\ (c) If $$G$$ fits neither (a) nor (b) then we give a deterministic asymptotic (2+o(1))-approximation of $$C_G$$.more » « less
An official website of the United States government

Full Text Available